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1 Wu’s Theorem

1.1 Setup: weaker case and radial Marstrand

Review:

Proposition 1.1. Fix L with dim(K ∩L) > 0. There exists an ergodic µ̃ on K × (K)×T
such that

1. µ̂ is adapted

2. µ̃ is invariant under T ×R−ξ

3. µ̃-a.e. (z, ν, θ) lies in Z = {ν(K ∩ Lz,θ) = 1,dim(ν) ≥ dim(K ∩ L)}

Theorem 1.1 (Furstenberg). Fix L. For m-ae. θ ∈ T, there is a z ∈ K such that

dim(K ∩ Lz,θ) ≥ dim(K ∩ L).

Our whole course is set up so we can prove the following result.

Theorem 1.2 (Wu). For all L, we have

dim(K ∩ L) ≤ max{0, dim(K)− 1}.

Let X = {(z, ν) ∈ K × P(K) : z ∈ supp(ν)}. Here are the spaces that will play a role
in our proofs.

(X × T, µ̃, T ×R−ξ)

(X, µ̂, T ) (T,m, T−ξ)

(K,µ, S)

ϕ π

ψ

First, we will prove the following and reach into the proof to help us prove the big
theorem:
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Corollary 1.1. For all L, we have dim(K ∩ L) ≤ max{0, 2 dim(K)− 1}.

Proof. Consider K −K = {z−w : z, w ∈ K}. Look at slices through this and 0. For all z,

(K −K) ∩ L0,θ ⊇ (K − z) ∩ L0,θ = (K ∩ Lz,θ)− z.

Pick L. Then Furstenburg’s theorem gives us that

dim((K −K) ∩ L0,θ) ≥ dim(K ∩ L)

for m-a.e. θ. To continue, we need a lemma.

Lemma 1.1 (radial Marstrand’s slicing theorem). For any A ⊆ R2,

dim(A ∩ L0,θ) ≤ max{0, dim(A)− 1}

for m-a.e. θ.

Proof. We can assume A doesn’t contain 0. That is, we can assume A =
⋃
n(A∩B(0, 1/n)c).

Fix n, then apply a coordinate change.

Continuing the proof,

Proof. By radial Marstrand, we get

dim(K ∩ L) ≤ max({0,dim(K −K)− 1)

There is a Lipchitz map from K ×K to K −K, so

dim(K ∩ L) ≤ max{0,dim(K ×K)− 1}.

Since the Hausdorff and box dimension of K agree, we get dim(K ×K) = 2 dim(K).

1.2 Proof of Wu’s theorem

To prove Wu’s theorem, we have to use a better argument.

Proof. Step 1: Assume that h(µ, S) = 0. Then

dim(µ=
h(µ, S)

log(r−1)
= 0,

so there exists E ∈ BK such that µ(E) = 1 and dim(E) = 0.
Recap: µ̃ on K × P (K)× T satisfies

(i) µ̃-a.e. (z, ν, θ) lies in Z.
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(ii) µ the first marginal, is supported on E, where dim(E) = 0.

(iii) The last marginal of µ̃ is m.

Recap: Furstenberg’s proof:

• µ̃-a.e. (z, ν, θ) lies in ZW = Z ∩ (E × P (K)× T)

• =⇒ m-a.e. θ lies in π[ZE ].

• =⇒ for m-a.e. θ ∈ T, there is a z ∈ E and ν ∈ P (K) such that

ν(K ∩ Lz,θ) = 1, dim(ν) ≥ dim(K ∩ L) =⇒ dim(K ∩ Lz,θ) ≥ dim(K ∩ L).

For all θınT and z ∈ E,

(K − E) ∩ L0,θ ⊇ (K − z) ∩ L0,θ = (K ∩ Lz,θ)− z

then
dim((K − E) ∩ L0,θ) ≥ dim(K ∩ L)

for a.e. θ. So

dim(K ∩ L) ≤ max{0,dim(K × E)− 1 = max{0,dim(K) +����dim(E)− 1}.

Step 2: Suppose that h(µ, S) > 0. By Sinai’s factor theorem, there exists a factor map
β : (K,µ, S)→ (Σ`, p

×N, σ) with h(p×N, σ) = H(p) = h(µ, S), i.e. h(µ, S | β) = 0. In total,
we have a factor map (X × T, µ̃, T ×R−ξ)→ (Σ`, p

×N, σ). Disintegrate:

µ̃ =

∫
Σ`

µ̃ω dp
×N(ω).

We claim that µ̃ω satisfies the properties (i),(ii),(ii) for p×N-a.e. ω.

(i) We knwo that µ̃(Z0) = 1 for some Z0 ⊆ Z, where Z0 ∈ BK×P (K)×T and µ̃(Z0) =∫
µ̃ω(Z0) dp×N(ω). This gives µ̃ω(Z0) = 1 for a.e. ω.

(ii) By uniqueness, if we write

µ =

∫
Σ
ψ∗ϕ∗µ̃ω︸ ︷︷ ︸

µω

dp×N(ω).

this is the disintegration of µ over β. From Lecture 24,

dim(µω) ≤ h(µ, S | β))

log(r−1)
= 0

for a.e. ω.
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(iii) Since (Σ`, p
×N, σ) is mixing and (T,m,R−ξ) has discrete spectrum, os the only joining

is p×N. So (β ◦ ψ ◦ ϕ, π)∗µ̃ = p×N × m. That is, random variables with these
distributions must be independent, so∫

X×T
f(β(z))g(θ) dµ̃(z, ν, θ) =

∫
Σ`

dp×N
∫
T
g dm

for all f and g. We can write the left hand side as∫
f(β(z)) · Eµ̃[g ◦ π | β ◦ ψ ◦ ϕ] dµ̃.

So ∫
g ◦ π dµ̃ω = Eµ̃[g ◦ π | β ◦ ψ ◦ ϕ](ω) =

∫
g dm

a.e. for all g ∈ C(T). By separability of C(T), this implies that for a.e. ω,
∫
g◦π dµ̂ω =∫

g dm for all g ∈ C(T). This is precisely property (iii).

1.3 The real situation

We have been working with a toy version of the situation Wu’s result covers. Here is the
actual dynamical system we’re looking at:

Suppose T2[K] = k and T3[L] = L. We can’t just take the product and run the
dynamics, since we’ve seen before that this changes the “aspect ratio” of boxes, making
it hard to calculate Hausdorff dimension. In this case, we have to pick a critical angle θ0,
apply T2 × T3 for lines below this angle, and apply T2 × id for lines above this angle. This
makes it so the number of times we apply T3 and T2 are such that 3n ∼ 2m, so the boxes
do not get squished so badly. This is the real setting of Wu’s result.
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